
MIMOSAS: Multisource Input Model Output Security Analysis

Suite

Installation Guide and Reference Manual

J. Zhao, B.L. Goldblum, C. Stewart
University of California, Berkeley

September 28, 2019

1 General Description

A supervised machine learning pipeline, MIMOSAS (Multisource Input Model Output Security Anal-
ysis Suite), has been developed for classification of multimodal data to inform nuclear security and
proliferation detection scenarios. MIMOSAS provides an end-to-end data processing workflow, from
data ingestion and pre-processing to model training and test set classification. The pipeline is specified
via an input deck, making workflow customization effortless, and the framework is modular allowing
for the easy addition of new learning algorithms. In the current build, the user selects from decision
tree, random forest, and feed-forward neural network classifiers to train customizable models with
built-in cross validation methods for hyperparameter optimization and feature selection. Trained
model outputs are stored with the associated metadata for rapid deployment. These can be applied
in supervised classification to assess previously unseen data or for further training as new observa-
tions are added to the existing data set. MIMOSAS provides the capability to fuse a wide range of
data sources (e.g., radiation, environmental, acoustic, seismic, imagery, etc.) to make, confirm, and
correlate machine learning predictions for nuclear security applications.

2 Customization

MIMOSAS is designed to be modified and expanded according to user specifications. Customization
tips will appear throughout the documentation as follows:

[CUSTOMIZATION] This is a tip for how to customize MIMOSAS.

3 Architecture and Overview

MIMOSAS is organized with a main function that initiates the program, a parameter parser, a data
processing utility, and a set of modular classifiers:

• main.py

• parameter parser.py

• preprocessing.py

1

• decision tree.py [modular classifier]

• random forest.py [modular classifier]

• feed forward nn.py [modular classifier]

• source.config

The modular classifiers are stored in the algorithms folder. A configuration file is used to set
the workflow and configure the parameters and initial settings. If a configuration file is not speci-
fied, default.config will be generated from source.config upon execution. DO NOT modify the
source.config file unless you are attempting customization. To specify your workflow, modify the
default.config file with your desired settings. When training is complete, trained models and run-
time logs will be saved in a saved models directory with a name based on the classifier type and run
date and time. To save the output, ensure that you have write permissions in the directory. The out-
put also includes a duplicated configuration file with model specifications for enhanced reproducibility.

[CUSTOMIZATION] New classifiers should be added in separate .py files to facilitate the

inclusion of additional dependencies with minimal interference. The source.config file

should be modified when adding new argument functionality.

The repository includes the following additional files and folders:

• README.md

• Doxyfile

• LICENSE.txt

• mimosas.txt

• sample data/sample input data.csv

• sample data/sample background data.csv

• saved models/

The README.md is rendered in Markdown on the MIMOSAS repository landing page: https://

github.com/nonproliferation/mimosas. The Doxyfile is used to generate software reference doc-
umentation (See Sec. 9). The LICENSE.txt file specifies the license governing MIMOSAS and is re-
produced herein in Sec. 10. The mimosas.txt file provides the ASCII art viewable during MIMOSAS
execution.

The sample data/ directory contains example input data. The sample input data.csv is an ex-
ample input dataset that illustrates the expected data format. Similarly, the sample background data.csv

is an example dataset that illustrates the expected data format for use in the background subtraction
algorithm described in Sec. 7.4. These sample input files can be used for execution of the workflow
specified in the auto-generated default.config file.

Within the saved models directory, the following three folders are present: decision tree,
random forest, and feed forward n. Each contains a Sample Session with representative output
in Sec. 5. These can also be used to execute the default.config using a previously-trained model.
Additional information on different modes of execution is available in Sec. 6.

2

https://github.com/nonproliferation/mimosas
https://github.com/nonproliferation/mimosas

4 Setup

Python 3 is required to run MIMOSAS, along with the Python packages listed in Table 1. In addition,
the following tools are recommended:

• git, to pull code from the repository, and

• doxygen, to compile documentation.

Package Version

numpy 1.17.2
scipy 1.3.1
pandas 0.25.1
scikit-learn 0.21.3
tensorflow 1.14.0
protobuf 3.9.2
Keras 2.3.0

Table 1: MIMOSAS Python package dependencies, including the recommended version.

5 Execution

Once you have cloned the MIMOSAS repository on your local machine, you can run the software by
executing the following command:

python main.py

This generates a default configuration file (default.config). To run the software using a custom
configuration file, execute:

python main.py --config custom.config

Edit the custom.config file with your desired workflow, specifications, and input parameters. Details
on how to structure the configuration file are provided in Sec. 6. Upon execution, the saved models

will be populated with a separate folder for each classifier. Runs are organized according to the day
and time of execution and the output consists of three files:

• model.pkl - the trained model,

• training.log - a log file that includes train and test scores, and

• used config.config - a copy of the configuration file used to generate this output.

6 Configuration File

The configuration file consists of sections that contain arguments, illustrated below.

[SECTION_1]

ARGUMENT_1=100

ARGUMENT_2=200

3

ARGUMENT_3=300

ARGUMENT_4=400

ARGUMENT_5=500

[SECTION_2]

ARGUMENT_1=100

ARGUMENT_2=200

ARGUMENT_3=300

ARGUMENT_4=400

ARGUMENT_5=500

[CUSTOMIZATION] Arguments are loaded as string variables and can be sensitive to extra

spaces and line breaks. Additional processing (e.g., type casting, split, etc.) may

be required when adding additional arguments.

The sections enabled in the MIMOSAS configuration file are outlined in Table 2.

Section Description Required? (Y/N)

[MAIN] General MIMOSAS operation and workflow settings Y
[TRAINING DATA] Data import, preprocessing, and split options for

training. The filepath for the labeled training dataset
is specified in this section.

Y

[TEST DATA] Import, preprocessing, and split options for the test
data. The filepath for the test dataset is specified
in this section. The same dataset may be used for
training and testing, but the user is cautioned to
specify the appropriate split parameters.

Y

[DECISION TREE] Supervised classification model in the form a tree
structure

N

[RANDOM FOREST] Supervised classification model ensemble comprised
of multiple decision trees

N

[FEED FORWARD] Supervised feed-forward neural network classification
model

N

Table 2: Sections supported in the MIMOSAS configuration file.

The arguments for the [MAIN], [TRAINING DATA], [TEST DATA], [DECISION TREE], [RANDOM FOREST],
and [FEED FORWARD] sections are described in Tables 3, 4, 5, 6, 7, and 8, respectively.

4

Argument Options Description

Save = True, False If True, save model after training
Verbose = True, False If True, print and log verbose output

Mode = Train, Test Train performs model training and cross validation.
Test uses a previously trained model specified in the
model path of the [TEST] section for classification.
Train, Test performs model training, cross valida-
tion, and tests.

Table 3: Arguments supported in the [MAIN] section of the MIMOSAS configuration file.

5

Argument Options Description

Data = String Path to labeled data.
Background Data = String Path to background data. If

background correction is not spec-
ified in Data Options, leave blank.
For proper functionality, data and
background data must have the same
units.

Background Correction Cols = Dict key, value pairs of string literals
where key is the column in Data

that will be corrected by the col-
umn value in Background Data. If
background correction is not speci-
fied inData Options, leave blank.

Split Fraction = Float ∈ [0, 1] Fraction of data to go into the training
set.

Split Seed = Int Seed used for random shuffling of data
prior to split.

Data Options = standardize,

minmaxscale,

remove outliers,

background correction

Preprocessing options applied prior to
shuffle and split. These are detailed in
Sec. 7.

Cols To Use = String Column headings separated by commas
indicating variables to use as input fea-
tures.

Label Col = String Column heading indicating variable to
use as label.

Cols To Standardize = String Column headings separated by commas
for variables to be standardized prior to
input.

Cols To MinMaxScale = String Column headings separated by commas
for variables to be min-max scaled prior
to input.

Remove Outlier Cols = String Column headings separated by commas
for variables to be used to reject outlier
data.

Outlier MADs Threshold = Float Number of Mean Absolute Deviations
(MADs) about the mean of features in
Remove Outlier Cols outside which a
sample is flagged for removal.

Device ID Col = String Column header indicating which device
(if, e.g., the data were gathered by an
array of sensors) collected each sample.
Used to perform preprocessing tasks on
a by-device basis. If only one device
was used, leave blank.

Table 4: Arguments supported in the [TRAINING DATA] section of the MIMOSAS configuration
file.

6

Argument Options Description

Data = String Path to test data
Background Data = String Path to background data. If

background correction is not spec-
ified in Data Options, leave blank.
For proper functionality, data and
background data must have the same
units.

Background Correction Cols = Dict key, value pairs of strings where
key is the column in Data which
will be corrected by the column
value in Background Data. If
background correction is not speci-
fied in Data Options, leave blank.

Split Fraction = Float ∈ [0, 1] Fraction of data to go into the test set
Split Seed = Int Seed used for random shuffling of data

prior to split. When using the same
dataset for train and test, it’s impor-
tant to sequester the test data by using
the same random seed.

Data Options = standardize,

minmaxscale,

remove outliers,

background correction

Preprocessing options applied prior to
shuffle and split. These are detailed in
Sec. 7.

Cols To Use = String Column headings separated by commas
indicating variables to use as input fea-
tures

Cols To Standardize = String Column headings separated by commas
for variables to be standardized prior to
input

Cols To MinMaxScale = String Column headings separated by commas
for variables to be min-max scaled prior
to input

Remove Outlier Cols = String Column headings separated by commas
for variables to be used to reject outlier
data.

Outlier MADs Threshold = Float Number of Mean Absolute Deviations
(MADs) about the mean of features in
Remove Outlier Cols outside which a
sample is flagged for removal.

Device ID Col = String Column header indicating which device
(if, e.g., the data were gathered by an
array of sensors) collected each sample.
Used to perform preprocessing tasks on
a by-device basis. If only one device
was used, leave blank.

Table 5: Arguments supported in the [TEST DATA] section of the MIMOSAS configuration file.

7

Argument Options Description
Classifier Criterion = entropy, gini Splitting criterion metric at each non-

terminal node.
Feature Selection = True, False If True, determine feature importance

using selected splitting criterion. See
Sec. 8.

Max Depth = Int Integers separated by commas repre-
senting maximum tree depth. The
maximum tree depth will be optimized
using cross validation.

CV Folds = Int >1 Number of groups that the training
dataset is split into for k-fold cross val-
idation

Load Model Path = String Path to previously trained model. If
used in Train mode, the specified
model will be further trained. Leave
blank to train a new model. Required
for Test only mode.

Table 6: Arguments supported in the [DECISION TREE] section of the MIMOSAS configuration file.

Argument Options Description
Classifier Criterion = entropy, gini Splitting criterion metric

Feature Selection = True, False If True, determine feature importance
using selected splitting criterion. See
Sec. 8.

N Estimators = Int Integers separated by commas repre-
senting number of trees. The number
of trees will be optimized using cross
validation.

Depth = Int Integers separated by commas repre-
senting maximum tree depth. The
maximum tree depth will be optimized
using cross validation.

CV Folds = Int >1 Number of groups that the training
dataset is split into for cross validation

Load Model Path = String Path to previously trained model. If
used in Train mode, the specified
model will be further trained. Leave
blank to train a new model. Required
for Test only mode.

Table 7: Arguments supported in the [RANDOM FOREST] section of the MIMOSAS configuration
file.

8

Argument Options Description
Feature Selection = True, False If True, determine feature importance

using random feature addition and ran-
dom feature elimination. See Sec. 8.

Features To Select = Int Number of features to select
Layers = [list[list[(Int)]]] List of lists; Each sub-list contains

positive integers indicating the num-
ber of nodes in the feed-forward neu-
ral network’s fully-connected dense hid-
den layers. For example, [[8, 6, 4], [8, 4]]
will test networks of two sizes. The first
has three hidden layers with 8, 6, and
4 nodes in hidden layers one, two, and
three, respectively. The second has two
hidden layers with 8 nodes in first and
4 in the second.

Activation Fns = [list[(Str)]] Activation function(s) to use in the net-
works hidden layers. Default is ‘elu,’
the Exponential Linear Unit. A full
list is available at https://keras.io/

activations/. Alternatively, the user
can define a function to be used at node
activations.

Dropout Rates = [list[(Float)]] Floating point(s) on [0.0, 1.0) indicat-
ing the fraction of nodes at each layer
that should be made inactive during
each training epoch [1].

Loss Fns = [list[(Str)] Function(s) used to calculate loss based
on discrepancy between predicted and
true outputs of the model during train-
ing. This loss is iteratively minimized
during training. A full list of op-
tions is available at https://keras.

io/losses/. Alternatively, the user
can define a function to be used to cal-
culate loss.

Optimizers = [list[(str)]] Algorithm(s) that define the process of
network parameters adjustment during
the training process. A full list of op-
tions is available at https://keras.

io/optimizers/.
Learning Rates = [list[(float)]] Initial learning rate(s) which scale the

rate at which network parameters are
adjusted during training. Note: Some
optimization algorithms dynamically
scale learning rates during training.

Max Epochs = [list[(int)]] Positive integer(s) indicating the maxi-
mum number of times the training set
is fed into the network during training.

Continued on next page

9

https://keras.io/activations/
https://keras.io/activations/
https://keras.io/losses/
https://keras.io/losses/
https://keras.io/optimizers/
https://keras.io/optimizers/

Continued from previous page
Batch Sizes = [list[(int)]] Positive integer(s) indicating the num-

ber of training set events the network is
scored on between each parameter ad-
justment during the training process.
For a training set with N examples,
there will be N/Batch Size batches per
epoch.

CV Folds = Int Number of groups that the training set
is split into for cross validation during
hyperparameter optimization

Load Model Path = String Path to previously trained model. If
used in Train mode, the specified
model will be further trained. Leave
blank to train a new model. Required
for Test only mode.

Table 8: Arguments supported in the [FEED FORWARD] section of the MIMOSAS configuration
file.

7 Preprocessing Options

Several algorithms are included as Data Options for both train and test data preprocessing. These
are detailed in turn below.

7.1 Standardize

The standardize algorithm adjusts each input feature specified in Cols To Standardize using Z-
score normalization. This is accomplished by individually calculating the mean, µ, and standard
deviation, σ, of each input feature distribution. Then, each value, x, is adjusted as follows:

x′ =
x− µ
σ

, (1)

where x′ is the scaled value. The result is an input feature distribution centered about zero and scaled
to unit variance.

7.2 Min-Max Scale

The minmaxscale algorithm adjusts each input feature specified in Cols To MinMaxScale individually
such that it is in the range between zero and one. This transformation is given by:

x′ =
x−min

max−min
(2)

where x is the original value, x′ is the scaled value, and max and min are the maximum and minimum
values in the feature range, respectively. The result is an input feature distribution that ranges from
zero to one.

7.3 Remove Outliers

The remove outliers algorithm is used to remove outlier data from the input features specified
in Remove Outlier Cols. Outliers are identified based on the number of mean absolute deviations

10

(MADs) about the mean of the feature distribution. The MAD is given by:

MAD =
1

n

n∑
i=1

| xi − µ |, (3)

where µ is the mean of the input feature distribution, xi is each individual value in the distribution,
and n is the total number of values for a given feature. The parameter Outlier MADs Threshold is
used to specify the number of MADs from the mean a value must be for it to be considered an outlier.

7.4 Background Correction

For the input features listed in Background Correction Cols, the background correction algorithm
piece-wise linearly interpolates background data specified in Background Data and subtracts the in-
terpolated values from the raw input data. The user is cautioned to ensure that the same units are
used for Data and Background Data.

8 Feature Selection

MIMOSAS includes methods to evaluate feature importance to assist in feature selection. For the
decision tree and random forest classifiers, the feature importance is determined based on the decrease
in node impurity and the fraction of input samples a feature contributes to in the prediction decision [2].
For the feed-forward neural network, recursive feature elimination [3] and recursive feature addition
[4] are used with features ranked according to the Matthews Correlation Coefficient [5]. Users are
encouraged to use this output to optimize Cols To Use in the workflow.

9 Documentation

To compile the software reference documentation, the Doxygen package must be installed [6]. From
the main directory, issue the following command:

doxygen Doxyfile

The folder docs contains the HTML documentation source pages. After generation, the documen-
tation can be viewed by opening the index.html in the docs directory using an HTML browser. The
documentation can also be viewed online here: https://nonproliferation.github.io/mimosas/.

10 License

Copyright c©2019-. The Regents of the University of California (Regents). All Rights Reserved.
Permission to use, copy, modify, and distribute this software and its documentation for educa-
tional, research, and not-for-profit purposes, without fee and without a signed licensing agreement,
is hereby granted, provided that the above copyright notice, this paragraph and the following two
paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology
Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-7201,
otl@berkeley.edu, http://ipira.berkeley.edu/industry-info for commercial licensing opportuni-
ties.

Created by Jared Zhao, Bethany L. Goldblum, Christopher Stewart, Alicia Ying-Ti Tsai, Shruthi
Chockkalingam, and Pedro Vicente Valdez, Department of Nuclear Engineering, University of Cali-
fornia, Berkeley.

11

https://nonproliferation.github.io/mimosas/
http://ipira.berkeley.edu/industry-info

IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
REGENTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY,
PROVIDED HEREUNDER IS PROVIDED “AS IS.” REGENTS HAS NO OBLIGATION TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

11 Acknowledgements and Disclaimer

The project was funded by the U.S. Department of Energy, National Nuclear Security Administration,
Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D).

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employ-
ees, makes any warranty, express or limited, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

12

References

[1] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine
Learning Research, 15 (2014) 1929-1958. http://jmlr.org/papers/v15/srivastava14a.html

[2] G. Louppe, “Understanding Random Forests: From Theory to Practice,” PhD Thesis, U. of Liege,
2014. https://arxiv.org/abs/1407.7502

[3] A. Altmann, L. Tolosi, O. Sander, and T. Lengauer, “Permutation importance: a corrected feature
importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340− 1347, 2010.

[4] T. Hamed, “Recursive Feature Addition: a Novel Feature Selection Technique, Including a Proof
of Concept in Network Security,” Doctoral Dissertation, The University of Guelph, 2017.

[5] B. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage
lysozyme,” Biochimica et Biophysica Acta (BBA) - Protein Structure, vol. 405, no. 2, pp. 442−451,
1975. http://www.sciencedirect.com/science/article/pii/0005279575901099

[6] Doxygen, http://www.doxygen.nl/

13

http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1407.7502
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.doxygen.nl/

	General Description
	Customization
	Architecture and Overview
	Setup
	Execution
	Configuration File
	Preprocessing Options
	Standardize
	Min-Max Scale
	Remove Outliers
	Background Correction

	Feature Selection
	Documentation
	License
	Acknowledgements and Disclaimer

